
36 BETTER SOFTWARE OCTOBER 2008 www.StickyMinds.com

G
ET
TY
	IM
A
G
ES

 www.StickyMinds.com OCTOBER 2008 BETTER SOFTWARE 37

“W
eb 2.0 is the future!
I need you to build
us a new Web front
end for our site. It

should use all the slick animations, auto-
suggest, and desktop-like features that
are the standard these days. It will need
to be fast, and it has to work with In-
ternet Explorer, Firefox, and Safari so
we can support all our customers. How
soon can you be done?”

Rachel broke out into a sweat re-
membering her boss’s request. She had
a lot of experience programming in Java
and was a whiz at refactoring using Java
IDEs—but Ajax? She was pretty sure
that required knowing JavaScript and
understanding the subtle quirks of all
the popular browsers. How would she
get through this?

Then Rachel remembered hearing
about the Google Web Toolkit, which
promised that you could build Ajax
applications using Java instead of
JavaScript and that it would handle all
the complicated cross-browser issues au-
tomatically. She downloaded the Google
Web Toolkit distribution, fired up her
Java IDE, and started writing ...

 Building Ajax applications can be
tricky—just as juggling chainsaws while
taming angry lions can be tricky.

Ajax application code is written in
JavaScript, which then runs in a Web
browser. A public Web site must support
multiple versions of multiple browsers
(Internet Explorer 5, 6, and 7; Firefox;
Opera; and Safari), each with its own
differences and idiosyncrasies. A de-
veloper has the difficult task of writing
JavaScript that safely manipulates the
Document Object Model (DOM) in a
way that behaves identically on all sup-
ported browsers. Of course, code on the
server side usually uses a different lan-

guage and set of libraries, so there’s a
lot of context switching to be done. And
we haven’t even considered the hardest
part—the application’s real business
logic!

Ajax is short for asynchronous
JavaScript with XML. Ajax applications
are highly responsive and feel more like
desktop clients than traditional, form-
based Web pages. The fundamental dif-
ference between standard Web sites and
Ajax applications is that standard Web
sites deliver all their data in a single page
load, whereas Ajax applications may
make several requests for data while the
application is running and a single page
is displayed. Data is delivered asynchro-
nously, which means the user may con-
tinue to use an application while waiting
for data from the server. This means
the server components need only send
the raw data and let the Web browser
handle all the formatting and presenta-
tion logic.

Google has created an innovative
tool to aid Ajax developers: the Google
Web Toolkit (GWT). GWT compiles
Java source code into browser-friendly
JavaScript. This means you can use
your favorite Java IDEs, design patterns,
and tools such as JUnit, FindBugs, and
PMD to create Web 2.0 applications.
GWT includes a rich component library
of user interface widgets, remote server
communication protocols, and an emu-
lated Java Runtime library, which maps
Java types to JavaScript types—all of
which work seamlessly across the major
browsers. Furthermore, you can debug
GWT applications using a standard Java
IDE. These features let you focus on
writing your application instead of wor-
rying about browser compatibility prob-
lems. Using GWT is like having a team-
mate who knows about all the different

// This is a Java method

public int add(int x, int y) {

 return x + y;

}

// This is a JavaScript method

public native void alert(String msg) /*-{

 $wnd.alert(msg);

}-*/;

Listing 1

38 BETTER SOFTWARE OCTOBER 2008 www.StickyMinds.com

browser incompatibilities and handles
them for you.

Java to JavaScript Compiler
What makes GWT unique is its

Java-to-JavaScript compiler. You write
plain old Java code and invoke GWT’s
compiler, which takes Java source files
and outputs JavaScript. This is a true
compiler—not a simple text transfor-
mation step like Ruby on Rails’ RJS,
which provides Ruby objects that use
String manipulation to create JavaScript
output. While Java is the preferred lan-
guage for writing GWT applications, it
doesn’t mean that you have to give up
using JavaScript. You may mix Java
and JavaScript code in the same class
with GWT’s JavaScript Native Interface
(JSNI) [1] by using the native key-
word.

Listing 1 demonstrates a Java class
with a native JavaScript instance method.
You can pass objects back and forth
across the Java/JavaScript boundary
and generally treat the code as if it were
all part of the same object. Using Java
as much as possible to ensure browser
portability is a best practice, as it lever-
ages all the GWT safety features, such as
preventing memory leaks. However, if
you need it, you can always write JSNI
methods.

Optimizations
Another benefit of using a compiler

is that it allows for compiler optimiza-
tions both in terms of performance and

generated JavaScript source file size. The
GWT compiler can replace many levels
of delegation with inline method calls,
which can yield code that’s as fast as
code that has been hand-optimized. This
means you can focus on writing well-
factored, object-oriented code instead of
obsessing about performance tweaks.

Ajax applications should be fast and
responsive, which means minimizing ini-
tial page load time. One way to do this
is to simply send less JavaScript code
from the server to the client. The GWT
compiler can create compact, obfuscated
JavaScript optimized for short download
time or human-readable code, which is
useful when diagnosing problems. In
addition, GWT analyzes your entire
application and only includes the code
that is actually used. Practically, this
means that you can reuse existing Java
libraries and other modules, and GWT
will compile only the routines you actu-
ally invoke. This optimization comes at
a price; you can’t use reflection in your
code since GWT can’t tell ahead of time
what methods are really invoked.

Debugging and Testing
Some problems are easiest to diag-

nose with a debugger, and GWT makes
debugging easy, as shown in figure 1.
Simply start up your application in
“hosted mode,” which runs your ap-
plication using Java bytecode instead of
JavaScript. This means you can use your
Java IDE’s debugger just as you would
for server-side code. To run applications

in hosted mode, the GWT development
kit includes an embedded browser in-
stance of Internet Explorer for Win-
dows, Firefox for Linux, and Safari for
Mac. Hosted mode is really useful, and
you’ll probably end up using it for most
of your development work with GWT.
For example, you can run your appli-
cation, change the source code, and hit
the browser’s refresh button to see your
changes immediately. Hosted mode also
provides a console window that you can
use to log debug messages during devel-
opment.

You can write unit tests with JUnit
just as you would for server-side code.
However, when you need to test applica-
tions that manipulate the DOM or use
JavaScript, GWT can run your unit tests
inside the same hosted-mode browser
you use for developing applications. If
you subclass GWTTestCase instead of
the JUnit standard TestCase, your test
will run in an invisible browser with
access to the DOM. You can run these
tests as compiled Java bytecode or as
JavaScript to ensure your application be-
haves correctly after being compiled.

Component Libraries
GWT includes a rich set of class li-

braries and user interface widgets. A
subset of the core Java SE libraries is
emulated by GWT, which means you
can use most of the core language data
types and collections. GWT also pro-
vides a rich set of browser widgets as
well as utilities for supporting multiple
languages and a way to handle the
browser’s back and forward buttons.

Widgets and UI Components
As figure 2 shows, Google provides

many widgets with GWT—from simple,
standard HTML widgets like buttons
and text fields to rich widgets com-
posed of simpler elements like a tree
view. Simple widgets such as Button,
Checkbox, Hyperlink, and TextField
provide simple wrappers around basic
HTML-form elements and are used for
the majority of form-based data input.
For more dynamic interfaces, GWT of-
fers a rich set of widgets including: Tab-
Panel for navigating through a tabbed
set of pages; SuggestBox for a text entry
field, which lists possible completions

Figure 1: Hosted mode runs applications as Java bytecode and enables debugging using Java
IDEs.

 www.StickyMinds.com OCTOBER 2008 BETTER SOFTWARE 39

as you type (think Google Suggest); and
DialogBox for dragable popup win-
dows.

GWT applications use an event-
based programming model, where each
button, text field, and other user inter-
face element responds to a set of actions
such as clicks, content changes, and
focus changes. This programming model
will be familiar to developers who have
written Swing desktop applications. In
fact, GWT code looks similar to Swing
code. You add behavior to your widgets
by adding event listeners that respond to
user interactions. For example, listing
2 shows how you define a button that
prints a message every time you click it.

By building your applications using
GWT widgets and the event-based
programming model, you let GWT
handle the complex differences between
browsers. For example, did you know
that Internet Explorer versions 5 and 6

have a problem where select boxes ap-
pear through any covering popup win-
dows? GWT prevents this display glitch
by applying a well-used fix that cre-
ates IFRAMEs that sit directly between
the select box and the popup window.
Did you know that Internet Explorer
propagates events through the docu-
ment model differently from all other
browsers? By using GWT’s event classes,
you never need to know about or deal
with the differences.

Internationalization Support
GWT’s built-in internationalization

features can help you build a multi-
language site. Your application’s text
and messages can be extracted into a
separate property file for each supported
language. GWT will then compile these
property files and generate separate ver-
sions of your Web application for each
language. Dates and currencies can be

formatted for display in a given locale
by using the DateTimeFormat and Num-
berFormat classes.

Back Button and Browser History
One of the most difficult issues in

writing Ajax applications is handling the
browser’s back button. An Ajax applica-
tion is usually a single page that requests
new data from the server without navi-
gating to another page. Since browsers
track navigation history by full-page
loads, handling the back button is tricky.
For example, consider working with the
Ajax-heavy Google Maps site: A user
navigates to Google Maps from the
Google start page then searches for the
closest pizzeria. The user finds several
results and clicks through a few choices
to view their details. When the user hits
the back button, he expects to go to the
previously viewed pizzeria—not back to
the Google start page.

GWT also provides a history mecha-
nism for creating applications that re-
spond predictably to the back and for-
ward buttons. This mechanism relies on
a common JavaScript trick that uses an
IFRAME HTML element to generate
page history. All you need to do for your
application is add an IFRAME element
to your page and let GWT handle all the
JavaScript tricks for you. In your appli-
cation, you tell GWT when to add an
entry into the browser history, such as
clicking a link or button. When the user
presses the back button, your applica-
tion will be notified and you can change
your page as needed.

Remote Server
Communication

Ajax applications wouldn’t be very
interesting if they didn’t have access
to data. GWT provides a number of
ways to access data on remote servers,
including a custom protocol that lets
you easily use your server-side objects
directly in the browser. To access data
services from other applications, GWT
also supports standard data interchange
formats like JSON and XML.

Using Server Objects on the
Client with GWT RPC

If you’re building both the server side
and the client side of a GWT application,

Figure 2: GWT provides many widgets from simple buttons to tabbed menus and dialog boxes.

40 BETTER SOFTWARE OCTOBER 2008 www.StickyMinds.com

then you’ll get a big productivity boost
by using GWT’s Remote Procedure Call
(RPC) feature. This mechanism allows
you to use your server-side objects di-
rectly on the client side. Consider what
would be required to use a plain-text
format: You’d fetch the required data on
the server side, write code to turn your
objects into a text representation, send
this text to the client, then write code on
the client that can parse and interpret the
message. With GWT RPC you can skip
writing extra encoding and decoding
layers and start actually using the data.

To use the GWT RPC feature, you
can use GWT’s servlet-based RPC
framework for new applications or use
the RPC libraries directly with your ex-
isting Web application frameworks, such
as Spring and Struts.

Communicating with Other Back
Ends with HTTP, JSON, and XML

Just because GWT client-side code
is written in Java doesn’t mean that the
server must be Java as well. The Re-
questBuilder class can be used to com-
municate with any back end: Python, C#,
or any language that can speak HTTP.

If you aren’t using GWT RPC in Java
or have a server back end in another
language, GWT supports the standard
XML and the JavaScript Object Nota-
tion (JSON) data interchange formats.
JSON has been gaining popularity in

Web services and is easily read by hu-
mans and browsers; in fact, it’s a valid
JavaScript object, as shown in listing 3.

JavaScript and GWT Third-
Party Libraries

Successful development platforms
have a rich community of third-party
libraries, and GWT can use both
JavaScript and other GWT libraries.

Since GWT applications are always
deployed as JavaScript, you can easily
use other JavaScript libraries. This means
you can use any existing JavaScript code
your company may have developed, as
well as popular third-party tools, such
as the animation framework Scriptacu-
lous and other application frameworks
like ExtJS. You’ll need to write native
JavaScript code, which acts as a bridge

between your Java and
JavaScript code. How-
ever, many folks have al-
ready done this work for
you and published these
bridges as GWT libraries.

In addition to
JavaScript library wrap-
pers, there are many
useful open source com-
ponents made specifically
for GWT. GWT-Maven
provides support for the

popular Maven build tool to build and
package GWT applications. Gwittir of-
fers an alternative to reflection to pro-
vide simple JavaBean-style introspection
that can be used for data binding and
validation. Popular server-side frame-
works are made GWT-friendly through
projects like Hibernate4gwt, which al-
lows you to use Hibernate objects easily
in your client code, and GWT-SL, a
server-side library that provides Spring
framework support. Check out the
GWT Google Group for discussions and
announcements of other tools.

Google also publishes additional
libraries for GWT. It wouldn’t be a
Google project if you couldn’t access the
Google online services, and the Google
API Libraries for GWT project does just
that: You get access to Maps, Search, of-
fline functionality with Gears, and the
multi-platform Google Gadgets library
for desktop and Web widgets. In the
eating-their-own-dog-food category, the
gwt-api-interop library was used with
GWT to help build the iPhone Google
Reader application. It provides a way
to bind JavaScript objects to Java ob-
jects, which means you can bind JSON
to Java objects without writing a parser
by hand.

The Real World
The story at the beginning of this

article isn’t pure fiction; a similar situa-
tion happened to me on a recent project.
My team was hired to build the front
end to a new site, and we had used
GWT previously. We had to support the
major browsers on Windows and Mac
and deal with requirements that were
evolving throughout the four-month
project. GWT allowed us to use our Java
experience with test-driven development
and refactoring to keep our design clean
and deliver on time. We started with two
full-time developers and scaled up to
four, then six—including two new hires.
GWT’s simple programming model
made this an ideal first project, as the
team spent more time focusing on the
business rules than learning APIs.

The next article in this series will
focus on testing and GWT, including
how to build Ajax applications test-first
to help create simpler, defect-free de-
signs. {end}

reFerenceS:
1] “JavaScript Native Interface (JSNI)” in the
Google Web Toolkit online documentation. code.
google.com/webtoolkit/documentation/.

For more on the following topics go to
www.StickyMinds.com/bettersoftware.
n	 More information
n Other Ajax framework options

Sticky
 Notes

Button button = new Button(“Click Me”);

button.addClickListener(new ClickListener() {

 public void onClick(Widget sender) {

 Window.alert(“I was clicked!”);

 }

});

Listing 2

{“widget”: {

 “debug”: “on”,

 “window”: {

 “title”: “Sample Widget”,

 “name”: “main_window”,

 “width”: 500,

 “height”: 250

 },

 “flags”: [1, 8, 16]

}}

Listing 3

