
26	 BETTER SOFTWARE	 NOVEMBER 2008	 www.StickyMinds.com

G
ET
TY
 IM
A
G
ES

Note: Just before press time, Google released Google Web Toolkit (GWT) version 1.5, which supports Java
5 language features such as generics, annotations, and enumerated types. GWT 1.5 includes numerous other
enhancements such as compiler improvements to improve the speed and size of generated JavaScript, overlay
types to easily wrap JavaScript objects, animations on the standard widgets, and many more.

	 www.StickyMinds.com	 NOVEMBER 2008	 BETTER SOFTWARE 	 27

In the October 2008 issue of Better
Software magazine, part one of this se-
ries introduced the Google Web Toolkit
(GWT), a tool for building cross-browser
Ajax applications written in Java. GWT
compiles Java code into JavaScript and
provides a component library that is
cross-browser compatible and memory-
leak proof. This means that you can
focus on writing your application busi-
ness logic instead of handling the acci-
dental complexity of supporting multiple
browsers.

Another core feature of
GWT is testability, which
means it’s easy to unit test
your application. This makes
it possible to write GWT ap-
plications test first—an agile
practice that helps build reli-
able and extensible applica-
tions. This article introduces
GWT’s testing infrastructure
and demonstrates how to
build an Ajax application test
first.

GWT’s Testing
Infrastructure

Since a GWT application is almost
entirely written in Java, you can test al-
most all of it using standard JUnit tests.
However, GWT also includes a special
subclass of JUnit’s TestCase that can
test code that requires JavaScript at run
time. While all of your client-side Java
code will ultimately be compiled to
JavaScript, only some of it directly uses
code implemented as JavaScript. For ex-
ample, the code in listing 1 is from the
GWT HTMLTable class.

This code sample demonstrates a
method written in Java (setStylePrima-
ryName) that relies on code implemented

directly in JavaScript, as indicated by
the keyword “native” in the definition
of getCellElement. As shown in listing
1, many of the GWT libraries include
some native code—in particular, all wid-
gets that manipulate the Domain Object
Model (DOM). Thus, when your unit
tests execute native JavaScript, you must
be running in an environment where it
can be executed, such as the hosted-
mode browser provided by GWT.

To test native JavaScript code, GWT
provides a subclass of JUnit’s TestCase

called GWTTestCase. This base class al-
lows you to implement your JUnit test
case as you normally would. In fact,
GWTTestCases look almost identical to
the standard JUnit TestCase shown in
listing 2.

The only visible difference is that all
GWTTestCases must override an abstract

method called getModuleName, which
returns a string containing the name of
your GWT code module as defined in
your application’s module configuration
XML file. (GWT applications can be
grouped into reusable modules, each of
which contains an XML file descriptor
with information including source code
location, dependencies, target browsers,
etc.)

When you run your test, the GWT
framework starts up an invisible (or
“headless”), hosted-mode browser and

then evaluates your test case against it.
What this means is that all the facilities of
the hosted browser are available to your
test case. You can run native JavaScript
functions, render widgets, or invoke
asynchronous remote procedure calls.
Furthermore, you can run your tests ei-
ther as a hybrid of Java and JavaScript

public void setStylePrimaryName(int row, int column, String styleName) {

 UIObject.setStylePrimaryName(getCellElement(bodyElem, row, column),

 styleName);

}

private native Element getCellElement(Element table, int row, int col) /*-{

 var out = table.rows[row].cells[col];

 return (out == null ? null : out);

}-*/;

Listing 1

public class MeetingSummaryLabelTest extends GWTTestCase {

 public String getModuleName() {

 return “com.danielwellman.booking.Booking”;

 }

 // Add tests here

}

Listing 2

R
achel had successfully built her Web 2.0 Ajax application using Google Web Toolkit, and her boss
and customers were ecstatic. Revenue had increased, which led to a steady stream of new business
requirements.

But there was a catch: Bugs appeared, got fixed, and mysteriously reappeared. Rachel found her team
spending an increasing amount of time fixing bugs while new feature development slowed to a crawl. She re-
membered that test-driven development was a great way to build applications in a manner that prevented de-
fects from reappearing. She knew that Google Web Toolkit had been built with testability in mind, so Rachel
downloaded JUnit and started writing tests ...

28	 BETTER SOFTWARE	 NOVEMBER 2008	 www.StickyMinds.com

code (“hosted mode”) or compile and
run all your Java code as JavaScript
(“Web mode”). The GWT team recom-
mends that you run your tests both in
hosted mode and Web mode, since there
are a few subtle differences between Java
and JavaScript [1], which could cause
unexpected behavior.

Being able to test native JavaScript
code in your Java JUnit tests is great,
but there are some limitations. First, the
normal browser-event mechanisms don’t
work as expected in test mode. For ex-
ample, you can’t programmatically click
a button and expect the corresponding
event handlers, such as onClick(), to
fire. Selenium [2], the open source testing
tool, can control a real browser and is a
helpful alternative in this situation.

There are also performance consider-
ations; the tests are slower than standard
JUnit TestCases. Running a GWTTest-
Case forces a compilation of the source
code in your module, which incurs an
initial startup delay. Furthermore, each
individual test method is wrapped by
logic that starts up and shuts down the
headless browser, which can take several
seconds. Some testers would call these
integration tests, not unit tests, since they
involve other systems, cross language
boundaries, and are slow to execute.

So when should you extend a stan-
dard JUnit TestCase vs. a GWTTest-
Case? In general, you should prefer stan-
dard JUnit TestCases because they run
orders of magnitude faster than a GWT-
TestCase. If your code executes native
JavaScript, however, or uses the libraries
supplied with GWT, then your test must
extend GWTTestCase. The upshot is that
even if you simply instantiate a widget
in the code being tested, you will have
to test this using a GWTTestCase. You
might try to find another design ap-
proach that avoids this native code re-
quirement, such as moving the logic to
another class.

GUI Design Patterns
To build a testable GUI application,

there are several design patterns and
techniques you can use. All of them
focus on one core principle: Move as
much logic as possible out of the view
and into other, more easily testable
layers. One common pattern is known

as Model-View-Presenter, where a pre-
senter object acts as a mediator between
the view (GUI) and model objects and
instructs the view layer to change states
in response to user input or model
changes. Martin Fowler has described a
few variants of this pattern in his bliki
[3], including Supervising Controller
and Passive View. Both patterns push all
logic- and event-handling code into the
presenter, but they differ in how much
the view knows about the model. Pre-
senters hand the model objects directly
to the view in the Supervising Controller
pattern; then the view picks the appro-
priate information to display. In Pas-
sive View, the view layer knows nothing

about the model objects, and the pre-
senter communicates model details to
the view in terms of primitives, such as
strings and numbers. Michael Feathers’s
paper “The Humble Dialog” [4] pro-
vides a good introduction to the subject,
and Martin Fowler’s bliki is a good re-
source for the other variations.

Example
To illustrate some of these concepts,

let’s take a look at building a small por-
tion of an application. For this example,
suppose we’re building an online appli-
cation for booking meeting rooms at a
conference center. A user will need to
specify some details about the meeting,

Figure 1: The first iteration of the UI for the booking application

Figure 2: Object responsibilities and interactions for the booking application

	 www.StickyMinds.com	 NOVEMBER 2008	 BETTER SOFTWARE 	 29

including the expected capacity and
date. The application will check with
a scheduling back-end service to deter-
mine if the room is available. If it’s not
available, the Save button will dim and
a message will be displayed. See figure 1
for a sample layout of this dialog.

After some quick drawing at a white-
board, we come up with a rough sketch
of the objects involved, as shown in
figure 2.

Building the Presenter
The key to testing presenters is to

keep in mind that they are plain old Java
code and can be tested like any other
Java code with JUnit. A mock-object li-
brary like JMock [5] can be used to test
the interactions between the presenter
and the view components.

Let’s tackle a small slice of the fol-
lowing functionality: The user enters a
meeting capacity that cannot be sched-
uled. First, the view will notify the pre-

senter that the user changed the value of
the capacity text field. The presenter will
then ask the RoomScheduler service if it
can accept a new meeting with the speci-
fied capacity. Finally, the presenter will
tell the view to disable the Save button.
Listing 3 shows a test for this scenario.

This is an interaction-based test
using JMock to provide test doubles
for the MeetingView and the Room-
Scheduler. We stub out the scheduler to
reply that it cannot accept the capacity
for the meeting and expect our view to
be told to disable the Save button. Note
here that the view ends up being fairly
dumb; it does nothing but notify the pre-
senter whenever the required capacity is
changed.

This code requires that we specify an
interface for our view:

public interface MeetingView {

 void disableSaveButton();

}

and for our service:
public interface RoomScheduler

{

boolean canAcceptCapacityFor(

	 Meeting meeting);

}

The code that passes this test is fairly
simple, as shown in listing 4.

The presenter is responsible for or-
chestrating the call to the remote ser-
vice and instructing the view to disable
the Save button. Note also that we’re
choosing to let the presenter maintain
the state of the Meeting object, so that
all UI events ultimately modify this ob-
ject.

This is a very simple implementation,
but it’s far from the completed design.
Our next test would probably check that
setting an acceptable capacity enables the
Save button and drives us to make either
a new enableSaveButton method or a
generalized setSaveButtonAvailable
method on the view. We’re still testing

@RunWith(JMock.class)

public class PresenterTest {

 Mockery context = new Mockery();

 @Test

 public void anUnavailableRoomDisablesTheSaveButton() {

 final MeetingView view = context.mock(MeetingView.class);

 final RoomScheduler scheduler = context.mock(RoomScheduler.class);

 final Meeting meeting = new Meeting();

 final Presenter presenter = new Presenter(meeting, view, scheduler);

 // The schedule service will reply with no available capacity

 context.checking(new Expectations() {

 {

 allowing(scheduler).canAcceptCapacityFor(meeting);

 will(returnValue(false));

 one(view).disableSaveButton();

 }

 });

 presenter.requiredCapacityChanged(new FakeTextContainer(“225”));

 assertEquals(“Should have updated the model’s capacity”, 225,

 meeting.getCapacity());

 }

}

Listing 3

30	 BETTER SOFTWARE	 NOVEMBER 2008	 www.StickyMinds.com

plain Java objects that don’t require any
JavaScript, so these tests run quickly.

Note the argument to requiredCa-
pacityChanged is of the type HasText.
This turns out to be an interface that is
part of the GWT libraries, as shown in
listing 5.

This simple interface is used by many

GWT components and allows manipula-
tion of a widget’s text contents, including
the TextBox in our example. This in-
terface is extremely useful for testing
because we don’t need to pass in a real
TextBox. Thus, we avoid instantiating
a text input in the DOM, requiring our
test to extend GWTTestCase to run in

a real browser. In listing 6, I’ve made a
simple, fake implementation that wraps
a string.

And finally, the view implementation
is shown in listing 7.

As you can see, there’s not much logic
here. Most of the code is involved in set-
ting up the event listeners and config-

public class Presenter {

 private Meeting meeting;

 private MeetingView meetingView;

 private RoomScheduler roomScheduler;

 public Presenter(Meeting meeting, MeetingView meetingView, RoomScheduler

roomScheduler) {

 this.meeting = meeting;

 this.meetingView = meetingView;

 this.roomScheduler = roomScheduler;

 }

 /**

 * Callback when the view’s capacity text box changes

 *

 * @param textField the capacity TextBox widget

 */

 public void requiredCapacityChanged(HasText textField) {

 meeting.setCapacity(Integer.parseInt(textField.getText()));

 if (!roomScheduler.canAcceptCapacityFor(meeting)) {

 meetingView.disableSaveButton();

 }

 }

 protected Meeting getMeeting() {

 return meeting;

 }

}

Listing 4

package com.google.gwt.user.client.ui;

public interface HasText {

 /**

 * Gets this object’s text.

 */

 String getText();

 /**

 * Sets this object’s text.

 *

 * @param text the object’s new text

 */

 void setText(String text);

}

Listing 5

public class FakeTextContainer implements HasText {

 private String text;

 public FakeTextContainer(String text) {

 this.text = text;

 }

 public String getText() {

 return text;

 }

 public void setText(String text) {

 this.text = text;

 }

}

Listing 6

	 www.StickyMinds.com	 NOVEMBER 2008	 BETTER SOFTWARE 	 31

uring the display widgets. So how do we
test it in a GWTTestCase?

We don’t. In fact, there’s not much
here that can be tested in an automated
test. As stated earlier, event propagation
won’t work by default in a GWTTest-
Case, and the layout of widgets is often
best checked visually. If you are building
a widget library, then you might want
to write GWTTestCases that test the
widget through its API, which is what

Google does with the widgets included
in GWT, such as Button, TextBox, and
Tree. However, these tests are slow (a
sample widget test takes twelve seconds
on my two-year-old workstation), and
any complex logic could be moved into
a simple presenter object, which could
be tested in a plain old, fast JUnit Test-
Case. For more ideas for testing GWT
widgets, see the StickyNotes for a link to
my blog post on the subject.

Note here that the view is instanti-
ating the model and presenter objects,
which is one way of ensuring that the
presenter is instantiated with a “live”
view. You also could have some higher-
level application object construct the
view and pass it to the presenter, which
would then need to register itself with
the view so all the controls know where
to send their events. This would look
something like listing 8.

Testing Asynchronous
Access to Remote Services

GWT provides a remote procedure
call (RPC) mechanism that enables
passing Java objects between the server
and client using a server-side serializa-
tion library. GWTTestCase supports
testing of these features by providing
utility methods that facilitate writing
asynchronous tests. Most of the infor-

public AlternatePresenter(Meeting meeting, MeetingView meetingView,

 RoomScheduler roomScheduler) {

 this.meeting = meeting;

 this.meetingView = meetingView;

 this.roomScheduler = roomScheduler;

 // Register to receive all widget callbacks to this presenter

 meetingView.registerPresenter(this);

}

Listing 8

public class MeetingViewWidget extends Composite implements MeetingView {

 private Button saveButton = new Button(“Save”);

 private TextBox capacityText = new TextBox();

 public MeetingViewWidget() {

 VerticalPanel mainPanel = new VerticalPanel();

 HorizontalPanel row = new HorizontalPanel();

 row.add(new Label(“Capacity:”));

 row.add(capacityText);

 mainPanel.add(row);

 mainPanel.add(saveButton);

 // Start with the save button disabled

 saveButton.setEnabled(false);

 // Here the view is responsible for creating the model and presenter

 final Presenter presenter = new Presenter(new Meeting(), this,

 new RemoteRoomScheduler());

 capacityText.addChangeListener(new ChangeListener() {

 public void onChange(Widget sender) {

 presenter.requiredCapacityChanged((HasText) sender);

 }

 });

 initWidget(mainPanel);

 }

 public void disableSaveButton() {

 saveButton.setEnabled(false);

 }

}

Listing 7

32	 BETTER SOFTWARE	 NOVEMBER 2008	 www.StickyMinds.com

[4] Feathers, Michael. “The Humble Dialog
Box.” Object Mentor, inc., 2002. www.objectmen-
tor.com/resources/articles/TheHumbleDialogBox.pdf
[5] JMock. jmock.org/
[6] Cooper, Robert and Collins, Charlie. GWT in
Practice. Manning Publications, 2008.

For more on the following topics go to
www.StickyMinds.com/bettersoftware.
n	 Testing GWT widgets
n	 Infrastructure tips
n	 More information
n	 GWTTestCase gotchas

Sticky
	 Notes

mation available on GWTTestCase fo-
cuses on these RPC cases, and I recom-
mend reading it for the full story. For
a brief introduction, refer to the GWT
documentation page titled “JUnit Inte-
gration” in the section “Asynchronous
Testing” or, for a deeper example, review
the book GWT in Practice [6].

Reflecting on this Design
Approach

My team used the design approach
I’ve described in this article on a project
and found it worked well. A disadvan-
tage of this design is that it relies on the
views’ correctly registering the callback
events with the presenter. Since this logic
was almost too simple to break, we ac-
cepted these limitations on our project.
For end-to-end integration tests, we
used Selenium to control an instance
of Firefox and Internet Explorer. These
tests filled in the cracks to ensure we had
widgets properly wired into their corre-
sponding presenters.

Testing GWT applications, like
testing Swing or other desktop client ap-
plications, can be fairly succinctly sum-
marized as follows: Don’t put logic in
your view components. If you find com-
plicated logic in your view, see if it can
be moved into the model objects or the
presenters. When you need to test view
component behavior, JavaScript, or re-
mote server communication, use a GWT-
TestCase. If you have too many slow
GWTTestCases, see if there’s some design
change that doesn’t require testing inside
a real browser. Let the tests help guide
your design, and you’ll be on your way
toward making Ajax development fun
and relatively painless. {end}

References:
[1] “Compatibility with the Java language and
libraries” in the Google Web Toolkit online
documentation.
tinyurl.com/6d4tg6
[2] Selenium. selenium.openqa.org/
[3] Fowler, Martin. martinfowler.com/eaaDev/
uiArchs.html

